1999.09-2003.07 清华大学材料科学与工程系 本科
2003.09-2006.06 美国斯坦福大学机械工程系 硕士
2003.09-2008.06 美国斯坦福大学材料科学与工程系 博士
2008.07-2011.03 美国斯坦福大学机械工程系 博士后
2011.04-2014.01 西班牙加泰罗尼亚理工大学第三应用数学系 讲师,博导
2014.01至今 上海交通大学密西根学院副教授,特别研究员,博导
2015.04至今 上海交通大学材料科学与工程学院副教授,博导
研究生:
Finite Element Methods
Foundation of Solid Mechanics
本科生:
Introduction to Finite Elements in Mechanical Engineering
Introduction to Solid Mechanics
Principles of Engineering Materials
1. V. Ziaei-Rad, L. Shen, J. Jiang, and Y. Shen. Identifying the crack path for the phase field approach to fracture with non-maximum suppression. Computer Methods in Applied Mechanics and Engineering. DOI: 10.1016/j.cma.2016.08.025
2. S. Zahiri, C. Shao, Y. Shen, and H. Bao. Collocation meshfree method to solve the gray phonon Boltzmann transport equation. Numerical Heat Transfer, Part B: Fundamentals. DOI: 10.1080/10407790.2016.1215719
3. V. Ziaei-Rad and Y. Shen. Massive parallelization of the phase field formulation for crack propagation with time adaptivity. Computer Methods in Applied Mechanics and Engineering. DOI: 10.1016/j.cma.2016.04.013
4. M. M. Chiaramonte, Y. Shen, L. M. Keer, and A. J. Lew. Computing stress intensity factors for curvilinear cracks. International Journal for Numerical Methods in Engineering 104(4) (2015) 260-296.
5. R. Rangarajan, M. M. Chiaramonte, M. J. Hunsweck, Y. Shen, A. J. Lew. Simulating curvilinear crack propagation in two dimensions with universal meshes. International Journal for Numerical Methods in Engineering 102(3-4) (2015) 632-670.
6. Y. Shen and A. J. Lew. A locking-free and optimally convergent discontinuous-Galerkin-based extended finite element method for cracked nearly incompressible solids. Computer Methods in Applied Mechanics and Engineering 273 (2014) 119-142.
7. Y. Shen. A variational inequality formulation to incorporate the fluid lag in fluid-driven fracture propagation. Computer Methods in Applied Mechanics and Engineering 272 (2014) 17-33.
8. F. Amiri, D. Millán, Y. Shen, T. Rabczuk and M. Arroyo. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics 69 (2014) 102-109.
9. M. J. Hunsweck, Y. Shen and A. J. Lew. A finite element approach to the simulation of hydraulic fractures with lag. International Journal for Numerical and Analytical Methods in Geomechanics 37(9) (2013) 993-1015.
10. Y. Shen and A. J. Lew. A family of discontinuous Galerkin mixed methods for nearly and perfectly incompressible elasticity. ESAIM: Mathematical Modelling and Numerical Analysis 46(5) (2012) 1003-1028.
11. Y. Shen and A. Lew. Stability and convergence proofs for a discontinuous-Galerkin-based extended finite element method for fracture mechanics. Computer Methods in Applied Mechanics and Engineering 199(37-40) (2010) 2360-2382.
12. Y. Shen and A. Lew. An optimally convergent discontinuous-Galerkin-based extended finite element method for fracture mechanics. International Journal for Numerical Methods in Engineering 82(6) (2010) 716-755.
13. Y. Shen, D. M. Barnett, and P. M. Pinsky. Modeling electrostatic force microscopy for conductive and dielectric samples using the boundary element method. Engineering Analysis with Boundary Elements 32(8) (2008) 682-691.
14. Y. Shen, D. M. Barnett, and P. M. Pinsky. Analytic perturbation solution to the capacitance system between a hyberboloidal tip and a rough surface. Applied Physics Letters 92(13) (2008) 134105.
15. Y. Shen, D. M. Barnett, and P. M. Pinsky. Simulating and interpreting Kelvin probe force microscopy images on dielectrics with boundary integral equations. Review of Scientific Instruments 79(2) (2008) 023711.
16. Y. Shen, M. Lee, W. Lee, D. M. Barnett, P. M. Pinsky, and F. B. Prinz. A resolution study for electrostatic force microscopy on bimetallic samples using the boundary element method. Nanotechnology 19(3) (2008) 035710.
17. D. Qiu, Y. X. Shen, and W. Z. Zhang. An extended invariant line analysis for fcc/bcc precipitation systems. Acta Materialia 54(2) (2006) 339-347.