您好,欢迎来到达州工业云! 平台首页 企业驾驶舱 帮助中心 企业登录 企业注册

HI,欢迎使用达州工业云平台!

账号必须大于2位

创新资源平台
服务平台首页>协同创新>专家库>专家详情

吴炳方(研究员)

所属单位:中国科学院空天信息创新研究院

担任职务:

擅长领域:

联系方式:010-64855689 邮箱:登录后查看

  •   吴炳方,中国科学院遥感与数字地球研究所,二级研究员,博士生导师,数字农业研究室主任。长期致力于全球农情、陆表蒸散、区域生态遥感研究,探索遥感应用方法论。 

      《中国遥感应用协会》常务理事,中国环境遥感专业委员会常务理事,中国自然资源协会理事,国际景观生态学会中国分会(IALE-China)理事,中国粮油信息与自动化分会副会长,国际数字地球学会中国国家委员会数字农业专业委员会主任委员,中国生态学会理事生态遥感专业委员会主任委员。 

      对地观测组织(GEO/GEOSS)农业主题联合主席、GEOGLAM联合主席、社会受益领域(SBIB)理事。 

      International Journal of Applied Earth Observation and Geomatics(JAG)副主编、编委,《遥感学报》副主编,《Chinese Geographic sciences》编委、《Journal of soils and sediments》主题编辑、《长江生态与环境》编委。     

    工作及教育背景 

    1.1997年至今,中国科学院遥感与数字地球研究所,研究员 

    2.1994年至1997年,比利时欧洲遥感国际有限公司,项目经理 

    3.1991年至1994年,中国科学院地理科学与资源研究所,副研究员 

    4.19921月至5月,美国亚里桑那大学,植被遥感,访问学者 

    5.19899月至19917月,中国科学院地理所,博士后 

    6.19869月至19897月,清华大学,环境规划与管理,博士 

    7.19829月至19857月,天津大学,水资源系统分析,硕士 

    8.19789月至19827月,南昌大学,水利工程,学士 

  • 主要成就

  • 近年代表性成果 

    专利: 

    1.一种集成化野外信息采集、定位和处理系统及方法,专利号:ZL01144228.X 

    2.一种粮食密度与水分的多频率电磁波测量方法,ZL201110094595.8  

    3.一种多频率SAR数据农作物遥感分类方法,ZL201110124666.4  

    4.粮食密度测量方法及装置,ZL201010207190.6  

    5.一种粮堆介电常数的微波测量方法,ZL200910089482.1  

    6.一种相位差测量方法,ZL 201110233831.X  

    专著: 

    1.中华人民共和国1100万土地覆被地图集. 中国地图出版社,2017 

    2.基于区域蒸散的北京市水资源管理. 科学出版社,2016 

    3.流域耗水管理方法与实践. 科学出版社,2014 

    4.三峡工程生态与环境监测系统研究. 科学出版社,2006 

    5.生态系统固碳观测与调查技术规范.科学出版社,2015,第2章第一作者 

    6.生态系统服务与生态安全. 高等教育出版社,2013,第3章第一作者 

    论文: 

    1.An Improved Method for Deriving Daily Evapotranspiration Estimates From Satellite Estimates on Cloud-Free DaysIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing20169(4): 1323-1330 

    2.A method for sensible heat flux model parameterization based on radiometric surface temperature and environmental factors without involving the parameter KB-1International Journal of Applied Earth Observation and Geo-information2016,47: 50-59 

    3.A drought monitoring operational system for China using satellite data: design and evaluationGeomatics Natural Hazards & Risk2016, 7(1): 264-277 

    4.Global crop monitoring: a satellite-based hierarchical approach. Remote Sensing. 7:3907-3933. 2015 

    5.A linear relationship between temporal multiband MODIS BRDF and Aerodynamic Roughness in HiWATER Wind Gradient Data. IEEE Geoscience and Remote Sensing Letters. 12: 507-511. 2015 

    6.Assessing potential water savings in agriculture on the Hai Basin plain, China. Agricultural Water Management. 154: 11-19. 2015 

    7.A Method for Deriving the Boundary Layer Mixing Height from MODIS Atmospheric Profile Data. Atmosphere. 6: 1346-1361. 2015 

    8.An improved satellite-based approach for estimating vapor pressure deficit from MODIS data. Journal of Geophysical Research: Atmospheres. 119: 12256-12271. 2015 

    9.Building African Ecosystem Research Network for sustaining local ecosystem goods and services. Chinese Geographical Science. 25: 414-425. 2015 

    10.Basin-wide evapotranspiration management: Concept and practical application in Hai Basin, China. Agricultural Water Management. 145: 145-153. 2014. 

    11.Remote sensing-based global crop monitoring: experiences with China's CropWatch system. International Journal of Digtial Earth, 7: 113-137. 2014. 

    12.Quantifying winter wheat residue biomass with a spectral angle index derived from China Environmental Satellite data. International Journal of Applied Earth Observation and Geo-information. 32:105-113. 2014. 

    13.A method to estimate diurnal surface soil heat flux from MODIS data for a sparse vegetation and bare soil. Journal of Hydrology. 511:139-150. 2014. 

    14.Spatial and temporal patterns of greenhouse gas emissions from Three Gorges reservoir of China. Biogeosciences, 10, 1219-1230. 2013.  

    15.Dynamic Monitoring of Soil Erosion for Upper Stream of Miyun Reservoir in the Last 30 Years. Journal of Mountain Science, 10:801-811. 2013 

    16.Estimating Regional Winter Wheat Leaf N Concentration with MERIS by Integrating a Field Observation-Based Model and Histogram Matching, Remote Sensing, 56:1589-1598. 2013 

    17.Generation of high spatial and temporal resolution NDVI and its application in crop biomass estimation, International Journal of Digital Earth, International Journal of Digital Earth, 6; 203-218. 2013 

    18.Validation of ETWatch using field measurements at diverse landscapes: A case study in Hai Basin of China. Journal of Hydrology. 436-437. 67-80. 2012.  

    19.Maize acreage estimation using ENVISAT MERIS and CBERS-02B CCD data in the North China Plain. Computers and Electronics in Agriculture 78 (2011) 208–214.  

    20.Validation of HJ-1 B charge-coupled device vegetation index products with spectral reflectance of Hyperion, International Journal of Remote Sensing, 2011, 32 (24): 9051-9070  

    21.An integrated crop condition monitoring system with remote sensing. Transactions of the ASABE (American Society of Agricultural and Biological Engineers), 53(3): 971-979. 2010.  

    22.大数据时代的农情监测与预警,遥感学报,2016, 20(5):1027-1037 

    23.全球变化大数据的科学认知与云共享平台,遥感学报,2016, 20(6):1479-1484 

    24.流域遥感方法与实践,遥感学报,201115(2)201-223 

    25.ETWatch的模型与方法,遥感学报,201115(2)224-239 

    26.三峡工程建设期库区生态环境保护措施及效果评价,长江流域资源与环境,201120(3)276-282 

    27.国外农情遥感监测系统现状与启示. 地球科学进展, 201025 (10): 1003-1012 

    28.“全球农情遥感速报系统(CropWatch)”新进展. 地球科学进展, 201025 (10): 1013-1022